Новости Golunoid.ru






Уважаемые друзья!
Проекту нужна Ваша помощь и Вы можете нам помочь!


Мы очень надеемся на Вашу помощь и поддержку! Всем спасибо, кто уже помогает нам на Boosty и готов помогать развивать проект!

Всем, кто поможет нашему проекту, будет предоставлен доступ к эксклюзивному контенту, а также выслано приглашение в закрытый чат рекомендаций.

ТемыВсе

Реакция читателя

Наука и Технологии
2022-05-25 09:16:44

В ЮФУ сделали шаг для создания нейронных сетей в виде микросхемы

В ЮФУ сделали шаг для создания нейронных сетей в виде микросхемы

Исследование доцента Института нанотехнологий, электроники и приборостроения Южного федерального университета Вадима Авилова направлено на создание и развитие в России новых технологий проектирования и производства перспективной элементно-компонентной базы интегральной наноэлектроники и искусственного интеллекта.

Нейронные сети сегодня переживают очередную волну научного интереса. В интернете уже можно найти много сервисов, которые задействуют нейросетевые вычисления для различных задач, такие как оживление фотографии, генерация изображений и речи, распознавание образов и многое другое. Однако наиболее востребованным направлением для нейронных сетей является робототехника.

Такие задачи как перемещение в пространстве при наличии внешних воздействий, динамическое построение маршрута, взаимодействие с человеком — невозможно реализовать в виде обычных алгоритмов, в то время как нейросетевые алгоритмы, в которых обработка информации аналогична работе нейронов в мозге, отлично справляются с такими решениями.

Однако основная проблема заключается в том, что все эти нейросетевые вычисления реализуются в виде программ для стандартных вычислительных устройств, не оптимизированных для такого класса вычислений. Решение проблемы — изготовление нейронной сети в виде микросхемы, где все вычисления осуществляются через искусственные синапсы. Применение таких нейронных процессоров может привести к значительному прорыву во многих областях, таких как робототехника, бионическое протезирование, автономное управление и прочее.

«Мой текущий проект «Разработка конструктивно-технологических решений формирования кроссбаров наноструктур оксида титана для элементов нейроморфного процессора бионических, робототехнических систем и искусственного интеллекта» посвящен приборной реализации нейронной сети, в основе которой лежит мемристорный эффект, то есть способность некоторых материалов значительно изменять свое сопротивление», – рассказал кандидат технических наук, доцент ИНЭП ЮФУ Вадим Авилов.

В ходе своего исследования ученый планирует добиться реализации нейросетевых алгоритмов в виде микросхемы на основе мемристоров из оксида титана. Данные структуры относят к «интеллектуальным» материалам и способны под действием электрического поля изменять свое сопротивление в широких пределах. Именно это свойство позволяет полностью реализовать функцию искусственных синапсов нейронной сети. Поэтому первоочередная задача проекта — исследование закономерностей переключения сопротивления мемристоров для дальнейшего прогнозирования режимов работы искусственных синапсов в нейронной сети.

«Наш научный коллектив уже проделал большую работу и исследования в рамках моего проекта — продолжение. Мы провели изучение влияния технологических параметров синтеза на формируемые наноструктуры, разработали физико-химическую модель, позволяющую рассчитать особенности синтеза наноструктур, приводящие к возникновению в них мемристорного переключения.

Был проведен ряд работ по изготовлению и исследованию макета резистивной памяти ReRAM на основе таких мемристорных структур и показана возможность изготовления многоуровневой памяти. Именно показанное многоуровневое переключение мемристоров привело к смещению научных исследований в область искусственных синапсов и нейронной сети», – поделился Вадим Авилов.

По словам ученого, разработка конструктивно-технологических решений создания синаптических структур будет стимулом для развития новых промышленных технологий в области изготовления нейроморфного процессора. Результаты проекта лягут в основу производства нейронных процессоров — отдельных микросхем, реализующих нейросетевой алгоритм обработки информации для задач робототехники, бионических применений и искусственного интеллекта. В отличие от программных решений нейросетевых вычислений такие процессоры будут оптимизированы.



наука
юфу
нейросеть




Энциклопедическая справка
НАУКА - это система знаний о закономерностях развития природы, общества и мышления, а также отдельная отрасль таких знаний. Это деятельность, направленная на выработку и систематизацию объективных знаний о действительности.
ЮФУ - Ю́жный федера́льный университе́т (ЮФУ) — высшее учебное заведение, один из федеральных университетов России, расположенный в Ростове-на-Дону и Таганроге Ростовской области. Является крупным научно-образовательным центром России.
Нейросеть - математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма.

Объекты

Социальные сети
Обсудить эту новость можно в VK или Telegram, а также можете поделиться материалом в месседжере или социальной сети



Новости на другие темы



Актуальные новости раздела
Другие новости
В начало



Последние публикации





© 2011-2024 Golunoid
Design & Development: 2004-2024 Comrasoft